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1.0 INTRODUCTION AND LITERATURE SURVEY 

1.1 ~ Co~ents 

The streamwise evolution of 2-D unsteady fluctuations in a 
parallel-flow boundary layer is formulated in this analysis. The 
normal velocity fluctuation and derivatives are specified along the 
y-axis, and the behavior in the boundary layer downstream of the 
y-axis is obtained. Permissible disturbances include the Tollmien 
wave and other eigenwaves, but also include vortical and irrotational 
fluctuations in the freestream. The analysis links the boundary 
conditions with the amplitudes and phases of the various waves. 

This boundary-value problem.uses the asymptotic solution of the 
Orr-Sommerfeld equation by Tsuge (Ref. I) which is summarized here in 
Appendix A. With this asymptotic theory, the Tollmien wave was 
calculated by Tsug~ and Sakai (Ref. 2). 

This report describes the details of Ref. 3 and is similar to the 
AIAA paper (Ref. 4). 

For brevity, the list of initial-value problems in time (Section 
1.2) and the list of boundary-value problems in space (Section 1.3) 
are restricted to problems that 

(a) analytically decompose initial or boundary conditions into 
the solutions of the Orr-Sommerfeld (or Rayleigh) equations, or 
those equations with a uniform mean flow 

(b) include freestream disturbances (i.e. attention is not 
restricted to the evolution of the discrete eigenmodes, except 
for channel flows where an infinite set of discrete eigenmodes 
is mathematically complete) 

The Fourier-Laplace solutions of the Orr-Sommerfeld equation have been 
documented in other papers and reports. A summary of the known 2-D 
and 3-D solutions appears in Refs. 5b and 5c. 

Besides the studies summarized in Sections 1.2 and 1.3, other 
approaches have been used to study unsteady shear layers, including 

(I) Superpositions of eigenmodes with their amplitudes specified. 
References using this approach include Criminale (Ref. 6, Chpt. V), 
Gaster (Ref. 7), and Mack and Kendall (Ref. 8). 

(2) Inviscid analyses of free-shear layers with ~ mean 
3 ~ i ~ i ~ ~ ,  e.g. Bechert (Refs. 9 and 10) 

(3) Analytical solutions of the unsteady Prandtl ~ / ~  
9 ~  or higher-order boundary layer theory, as surveyed by 
Teleonis (Ref. ii) 

(4) Lagrangian descriptions of turbulence convected past blunt bodies, 
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as described by the sudden ~ theories, e.g. Hunt (Ref. 12) 

(5) ~ ~  for shear layers using (a) the linearized, 
elliptic momentum equations with a specified mean flow, (b) the 
parabolized Navier-Stokes equations, (c) the Navier-Stokes equations, 
(d) Lagrangian tracking of vortex filaments, and (e) equations 
governing the evolution of the correlations with truncations or models 
for the higher correlations. Examples of these approaches are cited 
in Ref. 5c 

(6) Compressible boundary-value or initial-value analyses with 
freestream disturbances by Tam (Refs. 13-15), Shapiro (Ref. 31), and 
Thomas and Lekoudis (Ref. 17) 

(7) Deterministic experiments with vortical freestream disturbance by 
Dovgal, Kozlov, and Levchenko (Ref. 18) and Rockwell (Ref. 19). 

1.2 List of ~ Problems in Time for Parallel Flows 

(l.2a) An array of vortices bisected by a plate for a general 
orientation of the vortices, including viscosity (Ref. 20; Ref. 2] is 
closely related mathematically) 

(l.2b) 3-D oblique plane waves of vorticity bisected by a plate, 
including viscosity (Ref. 22) 

(1.2c) Free-shear layer with uniform mean vorticity excited by 
vortical fluctuations inside and outside the shear layer; resonant 
and nonresonant excitation (Ref. 23). This study was documented in 
"The temporal response of a free-shear layer to vortical disturbances" 
(1978), an unpublished paper available from the author. 

(l.2d) 3-D vorticity in a boundary layer represented by a layer of 
uniform mean vorticity; inviscid analysis by P. Durbin "Distortion 
of turbulence by a constant-shear layer adjacent to a wall," private 
communication (1977). 

(l.2e) 2-D fluctuations in a boundary layer with two layers of uniform 
mean vorticity in unstable and stable configurations, inviscid 
analysis (Refs. 24 and 25) 

(l.2f) Boundary layer with smooth velocity profiles, 2-D fluctuations, 
including viscosity (Ref. 26) 

(l.2g) Nonlinear temporal evolution of longitudinal vortices in a 
parallel-flow boundary layer, inviscid (Ref. 20) 

1.3 List of Boundary-Value Problems in ~ for Parallel 
-~maE~lllelFlows 

and 

(l.3a) Downstream viscous 2-D half-plane problem with arrays of 
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vortices (Refs. 27 and 28) 

(l.3b) Inviscid, uniform mean flow, 
quarter-plane with a plate (Ref. 29) 

2-D fluctuations in a 

(1.3c) Eight full-plane problems with a semi-infinite plate (with a 
leading edge), uniform mean flow (Refs. 30-33). These solutions are 
represented as a traveling wave and a superposition of standing waves 
in Ref. 34 

(l.3d) Full-plane problem with a finite-length plate, inviscid, 2-D 
fluctuations (Ref. 30) 

(l.3e) Inviscid problem with a mean boundary layer having two layers 
of constant mean vorticity (Ref. 35). This analysis shows the 
eigenmodes excited by vortical freestream disturbances. 

(l.3f) Viscous, downstream quarter-plane problem with 
velocity profile, 2-D fluctuations (Refs. 3,4,36) 

a smooth 

(l.3g) Viscous, downstream quarter-plane problem with a 2-D stationary 
wavy wall, 2-D fluctuations, smooth mean velocity profile (Ref. 37) 

(l.3h) Flow past a semi-infinite, stationary wavy wall (Ref. 38) 

(1.3i) Flow past a semi-infinite plate with traveling sinusoidally 
surface waves that travel at speeds different than the freestream 
speed, and galloping surface waves that travel at the freestream speed 
(Ref. 39) 

(l.3j) Boundary-value problem for a channel (Ref. 40) 

(l.3k) 3-D fluctuations in a viscous boundary-value problem with a 
smooth, parallel-flow boundary layer (Ref. 41) 

(1.31) Coupling between an oscillating freestream and a 
Tollmien-Schlichting wave in a nonparallel boundary layer (Ref. 42) 

Other analyses have been carried out that link the initial 
conditions with amplitudes of the instabilities. These studies 
include nonresonant and resonant excitation of buoyancy instabilities 
(Refs. 43-45) and the temporal evolution of 3-D disturbances in an 
Ekman boundary layer (Ref. 46). 

In the next section, the partial differential equation describing 
the evolution of disturbances will be derived and integral transformed 
to yield a forced Orr-Sommerfeld equation. In Section 3, an 
asymptotic solution of this forced equation is found. The inverse 
Laplace transform is obtained in Section 4. The formulation is 
summarized and discussed in Section 5. The method of successive 
approximation for solving the Orr-Sommerfeld equation is summarized in 
the appendix. 
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2.0 DERIVATION OF THE FORCED 3-D ORR-SOMMERFELD EQUATION 

The three momentum equations for a constant property flow are 
(i) written with velocities and pressure separated into mean and 
fluctuation components and (2) averaged to obtain equations for the 
mean quantities. The averaged equations are subtracted from those of 
part (i) above to yield equations for the disturbances, and the 
disturbance equati_ons are linearized for small-amplitude fluctuations. 
A parallel-flow, U = U(y) and V = W = 0, is assumed. Derivatives of 
these momentum equations and the continuity equation are combined so 
that the pressure and two of the three velocities are eliminated. The 
resultant equation governing the evolution of 3-D fluctuations in a 
parallel flow is 

(2.1) 

Also, the equation analogous to (2.1) for 

= 0  

the 2-D vorticity 

(2.4) 

where f = I/R is the inverse of the Reynolds number. 

This equation allows us to formulate a boundary-value problem in 
terms of solutions of the homogeneous Orr-Sommerfeld equation. This 
equation results when you seek solutions of form 

(2.2) 

w h e r e b y )  i s  a complex f u n c t i o n ,  ~ and ~ are the wavenumbers in  the x 
and z - d i r e c t i o n s ,  and ~ i s  the f requency.  When (2.2) i s  i n t roduced  
into (2.1), then the 3-D Orr-Sommerfeld equation results 

(p_ _ (p _ (2.3) 

where D = d/dy is the ordinary derivative. 

Fourier-Laplace transforms of (2.1) yield not equation (2.3) but 
the forced version derived in Section 2.3. This procedure shows how 
to superimpose the solutions. Inversely, it shows how to decompose 
the initial disturbances into the waves. 

Equations for primitive variables (such as velocities, 
vorticities, and pressure) are sometimes more useful than equations 
for the less intuitive variable ~. For example, equation (2.1) has a 
fourth derivative in x. Thus, four independent solutions are expected 
in the freestream as Ref. 27 indicated. 
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indicates that th~ vorticity convects (%+U~), diffuses ¢eY~), and 
is produced (v~) in _the shear layer. For inviscid flows with 
Jr rotational mean-flows (~ = 0) or flows with uniform mean vorticity 
(~ = 0), the disturbance vorticity convects with the mean flow. For 
t~ese flows, the vorticity is found by (analytically or numerically) 
tracking the vorticity as it convects downstream, followed by solving 
Poisson's equation for the disturbance streamfunction. By this 
method, solutions have been found which describe effects of leading 
and trailing edges, lateral edges, trailing vortex sheets, and other 
phenomena with practically important physics and mathematics. 
Although links are possible and desirable between these works and the 
Orr-Sommerfeld equation, direct study of the Orr-Sommerfeld equation 
has not provided the best insights into these new problems. 

2.2 Domains for Boundary-Value Problems 

Figure 2.1 shows the quarter-plane region (x 2 0, y ~ 0) studied 
here. Sufficient conditions on the velocity fluctuation are specified 
along the y-axis, and along the plate coinciding with the x-axis, so 
that solutions can be obtained in that quadrant. 

The domains for other boundary-value problems are also sketched 
in that figure. 

2.3 ~ ~ of the Partial I~_t~mmi~l ~ 

The coefficients ~ and ~in equation (2.1) are independent of 
x, z, and t. Thus, integral -t~ansforms in those directions reduce the 
partial differential equation to an ordinary differential equation. 
We focus on problems with "steady-state oscillations" where our wind 
tunnel has been turned on for a long time and the conditions along the 
y-axis oscillate in time (but not necessarily sinusoidally). The 
transient response arising from the start-up procedure has vanished 
from the region of interest. 

For this case, equation (2.1) is Fourier transformed in time. 
Because the z-domain extends from -~< z <~, a Fourier transform in z 
is taken. In Chapter 3, we study a 2-D flow. The complex Fourier 
transform in time and the z-direction is 

2 

The signs in the exponential have been chosen so the resultant 
transform is consistent with the classical Orr-Sommerfeld equation. 
An alternate transform is the ~ Fourier transform 

~z _ ~z 
/c~ ~ ~¥~- ~ ' ~ '  - -  

V .= ~ v(x~ 9,, ~, z ~) e -  ~ '2 "+ 6 z d ~  J ~  

- ~  ( 2 , 6 )  

By either transform, equation (2.1) reduces to 

9 
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Figure 2.1 Some domains for 2-D boundary-value problems 

]0 



A E D C - T R - 8 3 - 9  

{~w. ~_ ¢~}~ ~ ~ = o ~x ~-~ (2.7) 

where the Laplacian reduces to 
~z ~z b • _ ~z 

-= ~ x  = '" 3"q" (2.8) 

Because we are interested in the downstream quadrant in Figure 2.1, a 
one-sided Laplace transform in the x-direction is taken 

m 

¢~(9,; % ~',w)=- v(';¢, ..,~.; ~'> (.~) e J X  (2.9)  
~, ~ s~ 
} 
0 

where s is the complex Laplace parameter. With this transformation, 
the following equation results 

" -- e ~(~) 
{ ( ~ - ~ ) ( - ' + ~ - ~ 9 - ~ , - x ( ~ : - : : ~ ¢  = - ~  ~.~o~ 

When s = i~is introduced, where =4 is the complex x-wavenumber, then 
the bracketed term on the left-hand side is the classical 
Orr-Sommerfeld operator in equation (2.3). The right-hand side is the 
forcing function 

~:~,: . t( ~-~. -'~X ~-~. + ~)~ J(:r~: * ~ -  : ) -  ~'- _ _  ^ Co) 

s _~(~_~., s~_~ % ~ + 
~--~z- ./k~'x , ' j , - ,  (2.11) ~gz ~yz 

where ~¢=)is the normal velocity (or its derivatives) along the y-axis. 

For a 2-D flow with ~= 0, the forcing function is 

(2.12) 

To introduce definiteness in our analyses, the 
Fourier transformed and represented as 

forcing function is 

(2.13) 

Thus, the forced Orr-Sommerfeld equation for a 2-D flow studied in the 
next chapter is 

~_ -e -  :p 9 
(5- "~)m~ s:)-%, v ~ (o~s z 

s -- S (2.14) 

where the Laplace parameter and the x-wavenumber are related by s=i4. 

11 
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3.0 SOLUTION OF THE TWO-DIMENSIONAL FORCED ORR-SOMMERFELD EQUATION 

3 ,1  P.A.~I~i.~.,~LI~ ~ and I t s ~ : Z I F , ~ . . t , ~  For  m 

The objective now is to obtain the particular solution of the 
forced Orr-Sommerfeld equation 

} * 

where the forcing function is prescribed at x = 0 
component 

as the Fourier 

(3.2) 

The particular solution is obtained by the method of undetermined 
coefficients. For the Orr-Sommerfeld equation, the solution was given 
by Gustavsson (Ref. 26) as 

(3.3) 

where W is the Wronskian 

W =  

Wdf 

(3.4) 

andS] for j = 1,2,3,4 is the cofactor of ~. with the sign reversed. 
~ for j = 1,2,3,4 are four independent solutions of the Orr-Sommerfeld 
equation. 

Because the Orr-Sommerfeld equation lacks the next-to-highest 
derivative (the third derivative), then the Wronskian is constant. 
This means that the Wronskian only needs to be evaluated at one point, 
Y = YI" 

The wall conditions and the asymptotic solutions for large y are 
listed in Table i. The four solutions are derived in Appendix A. 
These asymptotic solutions are based on a new scaling, and are for 
flows where 0 ~ y <~ or -~< y <~. 

Substituting the asymptotic expressions for the ~s, then the 
Wronskian is 

M/= ~/x~ ~- ~/) Z where // [~ z÷ ~o4- (~2)] I/2 = (3.5) 
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Table i. 
Characteristics of the four independent, 

asympto t ic  s o l u t i o n s  of the  Orr-Sommerfeld equa t ion  

Solution Value at y=0 Asymptotic form for y>>y 
- - /  ^ 

0 (l-c) sinh~(y-y) 

A 

4~ z 0 (l-c) cosh~(y-y) 
,,% 

A 

~S 1 ~3 exp [-/4(y-y) ] 
A _/ A 

% 0 4~ 3 exp [ +p(y-y) ] 

where/x = [~4- iR( , , ' ¢ - ( .¢J )  ] and ~ii~#-- ' ;~1"~.) 

with the real part of/m chosen as positive. Also, the wall value of 
the particular solution (equation 3.3) must satisfy the impermeability 
condition, ~(0) = 0, by choosing the lower bound of the integral as 
fol lows 

$/ o m (3.6) 

The asymptotic particular solution is obtained with the solutions 
in Table I. The result is 

s:<m- 22+ 

+ ! 

/ 

(3.7) 

This solution is used later when an outer boundary condition is 
satisfied. Note that equation (3.7) includes terms which grow 
exponentially like exp(~y). These terms are cancelled later so that 
the complete solution is well behaved. Equation (3.7) does not 
include terms like exp~zy). 

3.2Cmm~m~Zta~x~andthe~%~L~oftheGeneral ~ 

Be general solution of the forced Orr-Sommerfeld equation (3.1) 
is 

13 
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@ = + 

j =  / 

sub ject  to  the boundary cond i t i ons  
% 

0 (impermeability) 
I at y = 0 

(~'= 0 (no-slip) 

and ~ is bounded as y ÷~. 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

Because four of the five solutions satisfy impermeability 

¢oj = ~, 6o) = ~ (o) = @+ co) = o 

then for the general solution (3.8) to satisfy impermeability, then 
the coefficient of the fifth term which does not satisfy 
impermeability must vanish 

C s = O (3.12) 

Also, because only ~ grows like exp~y) as y @~, then the 
boundedness condition (3.11) requires that coefficient to vanish also 

(4 = o (3.13) 

The remaining constants, Cland Cz, are determined by the no-slip 
(equation 3.10) and boundedness (equation 3.11) conditions 

(3.14) 

and " ~ "~  

Equation (3.15) reflects the idea that the coefficient of exp~4y) 
vanishes in the asymptotic region. Note that~does not vanish as 
y ~, but oscillates as exp(~-~y). 

These two equations for the two constants are solved to give 
• ~ • ~& 

¢, = - - z ~  

(3.16) 
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o 

where ~?oJ =~(oJi 1% F°/'~' 

d = 

O O 

.9' 
~, ?o) ~'co) 
~ (~ ~)~ 

(3.17) 

(3.10) 

Note that 4 = 0 is identical with the eigenvalue condition 
discrete modes, as seen from 

for the 

and 
C~ ~..~(.6,e ~ ,9  ' ~, - c~, ~'9'  

- -  e = 0 o;y--~ 
~= . ~ C~ ~ (3.19) 

The impermeability condition is automatically satisfied by,and ~z" 

A more precise look at the behavior of reveals that must be 
rescaled in the non-asymptotic region. The behavior in the 
non-asymptotic region and the asymptotic (outer) region are 

¢, ~ ~ <'~ '~ =" ('Y" 9 . )  i'o,.. ~ >,  y 
/-c 

where Bois a constant depending only on c =~J4; it is not 
by rescaling. Thus ~must be rescaled so that 

for the non-asymptotic expression for 4~#. 

affected 

(3.20) 

The determinant ~ of equation (3.19) has multiple zeros 
corresponding to the eigenvalues of the discrete modes. The 
Tollmien-Schlichting mode is the lowest or fundamental mode. Then 
i/A is expanded as the partial fractions 

%., 
" = 7--~__~, <,,,> i 

(3.21) 
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Using ~as rescaled by equation (3.20), then 

~z~_ 

fi e ~°) 
(~-~ 

4- 
/ z(=,-~,) 

Because ZI= 0 at :4 ==4 (N" ~ , , then h i_N_S --I 

= =4, ( N )  

(3.22) 

3.3 ~ of JGJ:le. ~ in ~ ~  

The final expression for the general solution of 
Orr-Sommerfeld equation is 

+, . ( , .re. ,--,-'~,~)] } 

t 
.4-. 

The new ~as rescaled in equation (3.20) is used. 
in ~ , it is rescaled by the same factor 

the 

(3.23) 

Because ~ is linear 

Far from the wall 

and @~/d -~ =4 # (3.24) 

(y>>y), an asymptotic general solution zesults when 

16 



AEDC-TR-'83-9 

the asymptotic 
The result is 

expression (3.7) is substituted into equation (3.23). 

~ L_ U:-~ ~>,J.I ~ ~ (~-~., 

+ z~ ~=<-<,-,) +,'co) 1 ( ~_  ~ +- ~:<-7 J (=<--<'~ ~''-----~ 

4- x<,< @ -  ~., ) <~ + <'~ a 

(~ (3.25) 

]7 
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4.0 INVERSE LAPLACE TRANSFORM 

4.1 General ~ for the ~ from Poles and Branch 
runes 

In Chapter 3, the general solution of the forced Orr-Sommerfeld 
equation in transform space was obtained. To express the fluctuation 
velocity as a function of x and y, the inverse Laplace transform is 
necessary 

27Te" 
/- ,  (4.1) 

a semi-circle of 
The real value s is 

where/'consists of the contours s = so+ iA and 
infinite radius in the domain of Real(s) ! 0. 
chosen so that the poles of~are located on the left side of the line 
so+ iA ,with -m<A<~. Figure 4.1 shows this contour, the poles, and 
the branch lines. 

The contribution from the jth-pole, s = sj, is calculated from 
the Cauchy theorem 

Ie"J== [esx  C5- s"J ]s= 5j (4.2) 

If~is not single-valued in the s-plane, as caused by fractional 
powers of s, then a Riemann cut is required. Because the integration 
contour/'cannot pass through the Riemann cut, it must detour along the 
branch cuts, %" , or along another path which does not cross those 
cuts. This rule gives us the following expression 

Sx CjJ 
V ~ ~ 2" 

J 5 

The contributions from the poles and branch line is obtained 
following sections. 

(4.3) 

in the 

4 . 2 ~ ~  

4.2.1 Poles from the ~ ~  

Eqn. (3.23) for the interior solution shows that there are N+2 
poles corresponding to s =i~"~nd s =~ if the forcing function FZis a 
pole-free analytic function. The equation also shows, for~to have a 
positive real part, that branch lines+are required because of the 
fractional power in eqn. (3.5). Because F- is open to free choice, 
poles or branch lines can be generated or eliminated by it. 

The poles s = i~,(N~f eqn. (3.23) are for the discrete eigenmodes. 
According to the Cauchy theorem (4.2), we have 
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<-,..J. . , ~ ' , < ~  
N 
I{_ 

,+ + 

zp.(~-~) ~ ~ -  ~ "t e "+ =<+'/<> i ,<p 
(4.4) 

Each mode satisfies the impermeability and no-slip conditions 
independent of each other mode and independent of other contributions. 
These conditions are 

The first condition is easily checked, 4(0) =4(01 = 0. 
condition is fulfilled because of the eigenvalue condition 

Zl= 
<~:> (=+_~. , j  :" 

.(NJ 
which vanishes for 4 =~, . 

The 

(4.5) 

second 

(4.6) 

4.2.2 Poles from the ~liD~ Wave Modes 

The contribution from the pole s = -~= s z (or 04 = 
obtained in a straightforward manner. The result is 

is also 

(4.7) 

This mode is a standing wave which decays as exp(-~x). , It satisfies 
impermeability and no-slip. This mode was s£udiea by Rogler and 
Reshotko in the freestream (Ref. 27) and appeared in another 
boundary-value problem in a quarter-plane (Ref. 29). Solutions of the 
Orr-Sommerfeld equation for boundary layers were calculated by Rogler 
and Tsug6 (Ref. 5a) and Rogler (Refs. 5b-c) for this decaying wave and 
the corresponding growing wave. This growing wave is discussed next. 

The contribution from the exponentially growing standing wave, 

20 
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s =~ (or W= -i@) can be calculated in the same manner. However, this 
mode is suppressed in this quarter-plane problem where x -~. To 
exclude this mode, the forcing function must have the form 

w27 

,= ' - -  C='+<':.) v ' -  (4.8) 

where m is an integer. Physically realizable situations exist where 
this growing mode is acceptable, such as the upstream influence of a 
trailing edge or another downstream boundary condition. The 
possibility of modeling such effects in a a problem with 0<x<m is not 
considered here. This growing mode can appear in boundary-value 
problems where the x-domain is finite with 0~x~L, or semi-infinite 
with -~<x~0, as Figure 2.1 shows. 

4.2.3 ~ from the Branch Line ~ a ~o~LUmmm 

As has been defined in eqn. (3.5), the function 

/ . , -  : ' -  s : +  - : ' / :  (4.9) 

is not single-valued in the s-plane. A branch cut is 
makes~Vunique and maps the whole s-plane onto 

,¢'." o," ¢'29 --> o 

required which 

(4 .i0) 

The contribution from this 
continuous (vortical) mode. 
to be a special curve. To simplify the task ahead, we let 

where 

branch line is an integral over the 
Condition (4.10) requires the branch cut 

W 

/ . , ---  [ (s- s,)( s , -  s> ],/z 
• ,e,~ ( ' , ~  "~<~,e) 'lz 

S 3 - 
Z 

$B = - -  

S#" ,~ (4.12b) 

(4.11) 

(4.12a) 

and define ~ = S - s s 
• I/Z 

Then /~" = [O-fS~- 5 s- O')] 

Now consider a curve along which Real~)=0 

Along that curve ~r~ 0 TM ÷ Q~3(~- SS--~') = ± 7f 

(4.13) 

(4.14) 

(4.15) 

(4.16) 
/ J 

The two vectors 6" and s. - s -~" and their arguments 6 and 8 are shown 
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in Figure 4.2. 
relationship by taking the tangent of (4.16) 

J 

The locus of the curve is obtained from the following 

- -  0 

/ 

( s , -  s,)<, - 

- ~ (  s ~ -  5a) <. 4~ 
or G ~" = 

This branch line forms part of a hyperbola, labeled ~ in 
along where/lis purely imaginary. 

_+ . T , / ~ [ ( s , + z r ) "  + s<.~} '1~ ( s,+ ~.),lz 
/~ = Sr +2 T 

(4.17) 

Figure 4.1, 

/ 

% -- ( s s -  s , )  " ~ 

/ 

%. = ( s , -  s,)<. ~ -  z ~ ,  (4.18) 

Along its upper side, Imag(/Z¢) > 0 and along its lower side, 
Imag(~Z) < 0. The whole s-plane is mapped onto a half plane 
Real(/Zz) > 0 by this branch cut. The contribution from the branch cut 

Zzr d <P Js 

( " 5  r , 

~< o (rilZ(s,+r) '12 [(5r÷zr)Z+ S~] 'i~ 

IS 

(4.19) 

evaluated at ~=- c'5.+:r(l- :'so ), and where g3is 

(4.20) 
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Contribution, I3, satisfies the impermeability and no-slip conditions 

(oJ = o ( . # ,  < oj : #2 ( o.J : ¢oJ : o )  

~,s~.o =<- ~. < z , e  ' z ,~&_~)  ~ • ; ~ . _ , ~ ) '  

z . (.<- w)  = 

 '¢oJ [ , _ A  : 
z ~ ( = + _ ~ ) 2  e ] o 

For large Reynolds numbers, the terms 
The expression simplifies to 

S~X ~ 

72" 
o 

(s,./s,. )z z) "~ O(R- are ignored 

<'s," • lw 
?,Iz  ( r +  s~) 'Iz • <'rl;--c~.} 

=- t~+ ~ s,.+7-1 
(4.21) 

The main part of the x-dependence of 13 comes from the term exp(sBx). 
Thus, the contribution from the branch line is approximately 

e- ~- exp[<~(x ~J- ~zx --~ ] (4.22~ 

where s$is given in eqn. (4.12). This approximate solution propagates 
with the freestream velocity and decays slowly in the x-direction. 
For x >> I, the x-dependence of the integral shows a universal 
feature. The contribution from the integrand is limited to a region 
close to T- 0. Transforming the variable from T to t such that 

= [T~ (,- "e,_c) ]'I~ 
Sr 

we have 

S~X ~ ~ z  

= _ f l , ( ~ = - ,  s,> e',V~'/'~(~r--: 5/./]'X'/z (4.23) 

which shows the enhancement of the spatial decay by the factor x -I/z, 
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4.3 ~ / A ~ m ~ m l  ~ 

4.3.1 Poles from the ~ 

The procedure used in Section 4.2.1 also applies to the 
asymptotic solution ~valid for y >> y as given in eqn. (3.25) 

I <')(',~, ~') = e ~ (°J 

+~ m-~')~ ~°)], ~-<'i e ~---q~ J÷(~----~) 2t.<'e ~= ,~, ÷ ------ ( r,,,J 

(4.24) 
(N) 

This expression shows that this mode decays as exp(-4, y) toward the 
freestream as it should. 

4.3.2 Poles from the ~ W a v e s  

The asymptotic solution for the pole at s = -~ is 
A 

t' t' K . -l- ' 

Because Izhas the form exp(-~x+i~y), far from the boundary layer edge~ 
this mode is oscillatory ih y and is irrotational. This agrees with 
Refs. 5a-c. 

A similar expressian can be obtained for the pole at s ;h~s 
corresponding to the e+~ x mode. If condition (4.8) applies, then 
mode is suppressed in the asymptotic and general solutions. 

4.3.3 Branch Line ~ig~a ~Q/L~ ~ 

The contribution from the branch line for the asymptotic solution 
is obtained from eqn. (4.19) with the function g3replaced by 

evaluated at ~= -e SS'~'~'?'~l-" fge J Sr-~ r 

Because s~ 

(4.26) 

i~/-~2Z/R from eqn. (4.12), this mode varies with y as 

25 
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R 

where T is the variable introduced in eqn. (4.18). 

(4.27) 

4.3.4 ~ Pole  ] ~ [ . . ~ 2 . ~  a ~ ~ in ~ and ~l~a/.~ ~ C . ~  

The asymptotic expression (3.25) reveals a pole at 

f~+~ = O (4.28) 

which has no counterpart in the interior solution. It is located on 
the hyperbola branch line, and is the mode forced by the periodicity 
at the initial line, x = 0, and continues to y ~m with wavenumber ~. 

Eqn. (4.28) is rewritten as 

( 5 -  % ) ( s -  s$)' = o 

~, : : ~ -  ~ ' - + F "  .~ oct- -~) , ~ , - -  
#. 

The contribution from the pole s = s4is 

sX 

(4.29) 

(4.30) 

From eqn. (4.29), the asymptotic behavior is 

e _z -~ - A~ (4.31) 

This solution is periodic in y, travels downstream with the freestream 
velocity, and slowly decays exponentially. 

The same procedure for the pole at s = sA leads to a solution 
which grows like exp(s~x). Although this ~ mode can be physically 
realized as the upstream influence of a disturbance, it is excluded in 
this quarter-plane problem by factorizing the forcing function as 

,) n 
F= (5-5. 

(4.32) 

where n is an integer. 
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4.3.5 The cases ~-- O and~'-~2 

The exterior solution (3.25) has factors o4 and o4-d2in the 
denominator, and thus have pole-like characteristics. The first one, 
however, is ruled out because it gives a solution which approaches a 
nonvanishing constant ^ 

This reflects the fact that F should have a factor of 

f = o76 (4.33) 

in realistic situations, as inferred from the form of eqn. (3.1). 

The other case of ~ =u3, or c = i, should be treated separately. 
It is not covered by the present analysis. In that case, two 
solutions ~and~need to be replaced by yexp(_+~y) which leads to a 
different expression for the Wronskian. 
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5.0 SUMMARY, CONCLUSIONS, AND RECO~4ENDATIONS 

5.1 ~mm~LY 

The boundary-value problem in space for the evolution of 
two-dimensional fluctuations in a boundary layer is formulated. With 
velocity fluctuations specified along the y-axis, and impermeability 
and no-slip imposed along the plate (which lies along the x-axis), we 
seek the small-amplitude solutions in the quarter-plane downstream of 
the y-axis. These velocity fluctuations are functions of "exponential 
order" that can be Laplace transformed. 

The differential equation 

is Fourier transformed in time and Laplace transformed in the 
x-direction. The resultant forced Orr-Sommerfeld equation is 

:~ cA{ (5.1a) 

where the forcing function is 
: <o> 

(5.1b) 

The forcing function is Fourier transformed in the 
represented as 

y-direction and 

(5.2) 

The particular integral of the forced equation is obtained by the 
method of variation of parameters. 

The four independent solutions of the homogeneous equation are 
obtained as asymptotic solutions of the Orr-Sommerfeld equation with 
an asymptotic expansion in~/R where~is the x-wavenumber and R is the 
Reynolds number. The smallness of this parameter under ordinary 
conditions assures rapid convergence. These four independent 
solutions have unique properties exploited in the present solution. 

The complementary and particular integrals are combined into a 
general solution which satisfies impermeability and no-slip at the 
wall and boundedness far-away. 

The inverse Laplace transform is found via. the Cauchy theorem 
with a contour integration taken to the right of all poles, along a 
semi-circle of infinite radius, and with indentations about the branch 
lines. 
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The left and right handed branches of one Riemann cut are 
hyperbolas. Integration about the left handed cut yields the 
contribution from the slowly-decaying vortical fluctuations in the 
freestream. 

Since contributions from the right-handed leg are physically 
unreasonable with a plate which extends to infinity downstream, 
conditions are imposed on the forcing function to eliminate those 
contributions. 

Contributions from the isolated poles for the discrete modes are 
obtained from the Cauchy theorem. The amplitude of the Tollmien wave 
is found as the first in this series. 

The amplitude of the decaying standing wave with another pole is 
similarly found. 

The exponentially-growing standing wave is excluded by 
introducing a condition on the forcing function. This contribution is 
excluded for the same reason as given above for excluding 
contributions from the right-handed branch line. 

The branch lines for the interior solution include the left and 
right-handed hyperbola branch cuts. The fluctuation associated with 
the right-handed branch line was calculated by Rogler (Ref. 47) as a 
solution of the Orr-Sommerfeld equation. 

The poles in the interior solution include the N discrete modes, 
the two modes corresponding to the exp(±~x) standing wave modes, and 
poles along the hyperbola branch lines. 

The poles in the asymptotic outer solution include the tails of 
the N discrete modes, the oscillatory solutions corresponding to 

~w z= -~5 and the oscillatory solutions corresponding to the standing 
aves'with s = ±i~. 

5 . 2 ~ f o r ~ t h e ~ ~  of the 
Wave 

(I) The procedure for calculating the four independent solutions of 
the homogeneous Orr-Sommerfeld equation, 4, 4, ~s , and ~, is 
outlined in Appendix A and Ref. i. These ~s are solutions of the 
Orr-Sommerfeld equation, as asymptotic solutions or as numerical 
solutions with edge conditions defined by the solutions of Table I. 
The derivatives D~and D~zare evaluated at y=0, and the ~s up to the 
2nd derivative are stored for 0~y< 9. 

(2) The derivatives ~ (d~/dy)/a4and ~(d~z/dy)/~are evaluated at y = 0 
and for ~ =~'~orresponding to the Tollmien wave and stored. 

(3) hNis evaluated from equation (3.23). 
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t 

(4) ~ (0) is calculated from equation (3.17). 

(5) I,(N~0,y) i s  e v a l u a t e d  from equa t ion  (4.4) for  t he  ampl i tude  of the  
Tollmien wave at x=0. 

5.3 ~ a n d  Recommendations 

A boundary-value problem is formulated which illustrates how 
initial fluctuations are represented as a superposition of its 
(spatial) Fourier-Laplace solutions. Figure 4.1 serves as a roadmap 
for the five families of fluctuations which can appear in a boundary 
layer. The solution is complete in the sense that a superposition of 
these fluctuations completely describes the f]owfield for an 
incompressible, viscous, small-amplitude, 2-D, unsteady flow in a 
parallel-flow boundary layer over a flat plate. 

Since this formulation in 1980, these five classes were 
calculated as solutions of the Orr-Sommerfeld equation. Their 
streamlines are plotted in Figures B.I-B.5 in Appendix B of this 
report. A description of each fluctuation appears beside each figure. 
These descriptions provide an overview of the five families that serve 
as basic building blocks for fluctuations in boundary layers. The 
five are: 

i. The ~ ~ i ~ ,  where the Tollmien (or 
Tollmien-Schlichting) wave is the fundamental mode of boundary 
layer instability. These fluctuations vanish far from the 
boundary layer. 

2. The slowly-decaying ~ ~ ,  with solutions 
described and calculated by Rogler and Reshotko (Ref. 48) and 
Salwen and Grosch (Refs. 49,50). Far from the boundary layer, 
these fluctuations are rotational. 

3. The exDlosivelv-arowina ~ ~ representing 
upstream diffusion of vorticity (Refs. 27,47). Far from the 
boundary layer, these fluctuations are rotational. 

4. The exDonentially-decayina ~ waves described in 
Refs. 5a,b~c. In the freestream, these waves are irrotational. 
With the help of Mr. Arnie Rosner, a 16 ~ animated movie was 
produced which illustrates these waves. The movie shows that 
these waves travel in the direction perpendicular to the wall. 
Ref. 34 shows that a spectrum of these standing waves appear 
downstream of the leading edge when freestream disturbances 
interact with that leading edge. The waves can be generated by 
surface waviness which is steady (Ref. 38) or unsteady (Ref. 39) 
if a leading edge exists. 

5. The exponentiallv-arowina ~ waves also described in 
Refs. 5a,b,c. Altho6gh these waves are physically realizable in 
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some problems, they are excluded in this problem with a flat 
plate that extends to infinity downstream. Far from the boundary 
layer, these growing standing waves are irrotational. 

In future studies, the theory could be applied to identify what 
properties of the initial disturbances are responsible for exciting 
the Tollmien waves, and the role of the mean velocity profile (as 
influenced by the mean pressure gradient and wall roughness). Further 
study is also required to account for the leading and trailing edges, 
3-D disturbances, and the growth of the boundary layer. 

The 3-D counterpart of this analysis was described in Ref. 41, 
but additional analysis and calculations are required to complete that 

study. 
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Appendix A 
METHOD OF SUCCESSIVE APPROXIMATION 

FOR SOLVING THE ORR-SOMMERFELD EQUATION USING NEW SCALING 

A.I ~ Comments 

This appendix summarizes a method used to solve the 
Orr-Sommerfeld equation 

/~,,~::~ (A.I) 

where D = d/dy, R = ~/mis the Reynolds number, ~ and ~ are the 
dimensionless wave,umbers ~n the streamwise and spanwise directions, 
respectively, and A =4z+~ . 

Heisenberg (Ref. 52) observed that the Orr-Sommerfeld 
can be solved analytically in the inviscid limit 

with a small wavenumber A 2~ <.: P~F' 

equation 

(A.2a) 

(A.2b) 

Tsuge (Ref. i) recognized that the reduced (but still 
Orr-Sommerfeld equation 

can be integrated once to yield a third-order equation 

I 1 + ¢ : c, 

This equation is the zeroth-order equation associated 
following expansion 

with y :6~ and += l: 
<N) 

The functions~ (N=0,1,2,...) obey the following set of equations 

viscous) 

(A.3) 

(A.4) 

with the 

(A.5) 

(A.6a,b) 

I Co)~ ~o) = 0 (A.7) 

z :°J~ e.~ _ z e . ) ~  co;  (A.8) 

e,,' e,',-, '/ e~-  z J  
/ ~'o) gg('~,) . /- ~ _ ~z~ (n>2) (A.9) 

6 o) L( i ) 
where the operators L and are defined by 

(A.10] 
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Equation (A.4) 

z 

is the zeroth-order equation in this set. 

(A.IZ) 

A.2 Four jl~l~Ic]~ ~ of the 2 ~ ~  

Equation (A.3 or A.8), or its integrated version (A.4) 

has four independent solutions, ~ ,/=1-4. Solutions 6~ and ~zboth tend 
to slowly varying functions, whereas ~ and ~exhibit rapid decay or 
growth. The solutions are found in the order ~a ~ ~P2 ~ ~ ~ in a form 
where each solution requires at most knowledge of the ~S from earlier 
solutions. ~ and ~are found exactly in terms of ~ and ~z" 

The homogeneous solution of equation (A.4) is found first. 
Because of its prospective exponential decay, the solution ~s is 
assumed of form 

= exp~  
o d(~ (A.131 

With this transformation of variables, the homogeneous form of 
equation (A.12) is 

(A.14) 

or alternately and more conveniently 

i = p- ~ c 0 

(A.15a,b) 

Since we are seeking a solution of. .(A.15a,b) which 
exponentially in the asymptotic limit ( A,/v~ 0), the root for A with 
negative real part is 

a ~ - e  ~ ~)/" 
/-4~ ( ' (S- -  C) ;'/°°'~ 2"-~ >" / (A.16a,b) 

In solving equation (A.15a,b) with asymptotic conditions 
is useful to introduce a variable transformation 

v= - f - ~  z ~ ( ~ - ~ ) -  ~ ~ 

(A.16a,b), it 

(A.17a,b) 
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and work with the equations in the new dependent variables (V,W) 
--% 

~>+A v - z < - "  o '  = o 
",2_ 

PV~ IA W - - 3 c ' 6 "  : (9 (A.18a,b) 

subject to the asymptotic conditions 

V~ M/-~ <9 o3 f "--" ~ (A.19a,b) 
A 

The integration may be started at a point ~ =~ (>>i) with the initial 
values 

V =2~///A 
, f 

W" = ,9:" ~ / Z  t~ (A.20a,b) 

and with ~ given by equation (A.16a) are moderately small. The 
quadrature marches inward from this point, where the nonlinearity of 
equation (A.18) appears in the form 

,~ = - e c + z < ' v - +  < ' ~ , )  ' l z  
(A.21) 

and is taken into account for ~ < ~. 

This method of numerical integration of the original equation 
(A.15) works successfully only for the decaying solution ~. A 
formally identical procedure for the growing solution ~4 suffers from 
numerical instabilities. The two solutions are different because the 
point~ =~is a saddle singularity of equation (A.15) for the case 
treated, but it is a nodal singularity from which infinitely many 
solutions emerge for ~. 

A straightforward calculation from (A.14, A.21, and A.20) leads 
to the solution 

/ 

The classical counterpart of~given in Ref. 52 is 

(,) 
where H,/~ is the Hankel function of the first 
defined by 

, = 

(A.23) 

kind and 7" and a o are 

(A.24) 
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with subscript c signifying the value at the critical layer. For 
Y>>l, (A.23) takes the form 

) (7") 

If we employ the linear approximation (A.24) for U-c at the critical 
point, solution (A.22) reduces to (A.25). 

with 

After one of the solutions of the third order equation (A.13) is 
found, the difficulties in solving for the remaining solutions are 
considerably reduced because of the following theorem: If n 
independent solutions of the mth order linear differential equation 
are at hand, then the (n+l)th solution is obtained by solving an 
equation of (m-n)th order. To use this theorem for the second 
solution ~z requires that an equation of the order 3 - 1 = 2 be derived 
by putting 7 

o 

and by subst i tut ing into equation (A.13). This, in turn, is 
equivalent to claiming that if G is assumed in the form 

O 

then the transformed variable S obeys a first order nonlinear 
equation. A simple calculation actually confirms the assertion, 
yielding a Riccati equation 

~ Sa + AS- W=O (A.29) 

where A and H/ have been solved from eqns. (A.8) @nd (A.II) , 
respectively. Of the two asymptotic roots of (A.29) for S-0, the one 
that vanishes as~ ~, namely 

{ 
5 = ~v/A (A.30) 

is the correct choice, since only this root insures that ~a meets the 
need for having a slow variation as 7 ÷~" In fact, then 

(A.31) • 7 P'/>'I 

{ I,} 
0 
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Because the integrand in (A.31) is a rapidly growing function, only 
the portion near the upper bound contributes to the integral. Then 
the integral is replaced with 

It is interesting to compare ~ of (A.31) with its classical 
counterpart 

which represent the inner (viscous) and outer (inviscid) solutions by 
Heisenberg (Ref. 52). The classical ~ is ~ slowly varying, 
whereas the~zgiven here is moderately varying for?-- 0(i), and is a 
rapidly varying function of the physical coordinate y = ~f. This 
solution tends only asymptotically for ~ >> 1 to a slowly varying 
function. 

Also we note that solution (A.31) coincides with the leading term 
of the classical outer solution, which further substantiates the 
asymptotic method applied here. 

Repeated use of the theorem assures that the third solution 
~satisfies a first order linear differential equation to be deduced 
from (A.13). This assertion is realized by the method of variation of 
constants 

where ~ and ~are functions of ~ to be determined. Having eliminated 
~z between the original equation (A.13) and the supplementary condition 

which is standard to this method, we are lead to the equation for /33 

o 

This equation is integrated twice, and its substitution 
gives 

I : -  

o 0 

into (A.33) 

(A.34) 
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where W is the Wronskian formed by~zand ~s 

It is easily confirmed from solution (A.34) for ~that it has an 
asymptotic form of exponential growth with~ . In fact, using the 
same approximation as has been used previously in deriving (A.3]), we 
have for (A.34) 

with 

/ 

e+< : 

(A.36) 

In deriving the second row, the asymptotic expressions (A.24) and 
(A.31) for ~z and ~s have been used. Relationship (A.36) is again in 
qualitative agreement with its classical equivalent, as is the case 
for the decaying solution ~ . The classical equivalent is, from 
Ref. 51, 

,/3 (A.37) 

with the same nomenclature as before with the Hankel function of the 
second kind H~/~ ) . ?e asymptotic expression of (A.25) for Y>> 1 is 

3 (A.38) 

in agreement with (A.36) with limited accuracy in the velocity 
profile. 

The set of solutions (~,~,~) which has been constructed has a 
noteworthy characteristic for the Wronskian that simplifies the 
analyses which follow 

This formula is easily checked by notin¢ 

=I 

(A.39) 

the following relationship 
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which holds for J= 0, i, 2. 

Since all homogeneous solutions are exhausted, the fourth 
solution 4~/ of equation (A.12) is the particular solution of the 
equation with C i = 1 

- -  ~ - ' ( ' U - C . , )  ~ + : ' U  ~ = ~." (A.40) 

The method of variation of constants is used here also, since all of 
the homogeneous solutions ~z through ~ are available. The theorem 
states that no differential equation needs to be solved. A 
manipulation using the key property (A.39) leads to the solution 

. 

with Z~ = ~/ ~7 (/: z,,) CA42~ 
O 

where ~ =? >> 1 is a point beyond which the asymptotic expressions for 
~z through ~ are valid. Taking the derivatives successively, we have 

?-" ./: ° i  " -  
( ,/ 

÷ / j/~ 2 WJ. 
t, 7 + <%., < ' / : " " ' )  c~.~) 

This result can be checked by using (A.38), (A.32), and (A.33). 

The function ~ in expression (A.41) behaves as a slowly varying 
function for ~ >> 1 under the same conditions as invoked in deriving 
the asymptotic expression (A.31) for ~9 z . The resulting expression is 

-'- - __ __ (?>?>l) (a.44) 

For comparison, the classical equivalent to this function is 

('%j<.,.. = .,..,. o F : , , ~ )  - ' /~  
• ""  .V - Z  

( '~)c/. :,.,r" = ("/..5-¢,) I e a - c . ,  ) J,9' -" 0("4z,  ) (A.45) 

where Tis defined in (A.24). The leading terms of the asymptotic 
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expression agree with the leading terms of the classical outer 
solution. 

Because of (A.43), we can show the following relationship for the 
Wronskian formed by the four solutions ~thcough 

, o l  

@= ~ @+ 

(A.46) 

i t i s l ~  Oraer ~ 

The full solution of the Orr-Sommerfeld equation is constructed 
from the series (A.6) by successive approximation starting with 
equation (A.13) with solution~'°~known. In practice, the nth-order 
correction ~.~ is obtained by solving the inhomogeneous equations 
(A.10) foll~wing the same procedure as has lead from equation (A.40) 
to solution (A.41). The result is 

+ J7 (A.47) 

w ,:h z C o -  - "> - / (A.48) 

~, ;; r > ~  >>,, 
Using these formula, the same approximation as used in deriving 

the asymptotic expressions for ~ and ~z' we get 

~' - ~ co) 
This expression, when sdbstituted into A.5, with ~ = ~(2:1,2) given 
by. (A.44) and (A.31) respectively, coincides wi6h Heisenberg's 
invlscid outer solutions (Ref. 52). The series solutions for F, and 
F_lare uniformly convergent if the lower bound ~-6~is taken such that 
U-c varies only slowly for 9 < Y- In fact, then, the series sum up to 
yield ,/~ 

#i 

: C~- ~J ,-o.>,+ '~Cy-/.,)" ~ (A.Sll 

In closing, this solution of the Orr-Sommerfeld equation for the 
Tollmien wave has been calculated and verified by Tsuge and Sakai 
(Ref. 2). 

44 



AEDC-TR-83-9 

Appendix B 
A summary of  b a s i c  c h a r a c t e r i s t i c s  of  f i v e  forms of  2-D s p a t i a l  

o s c i l l a t i o n s  in  a p a r a l l e l - f l o w ,  B l a s i u s  boundary  l a y e r ,  v i s c o u s ,  f l a t  
p l a t e ,  wi th  0~y<~ 

1 .  The T o l l m i e n - S c h l i c h t i n l  ~ wave 
is  the  fundamenta l  wave in  a f i n i t e  se t  of  
e igeumodes.  The T-S wave i s  the o n l y  known 
u n s t a b l e  etgenwave f o r  an i n c o m p r e s s i b l e ,  f l a t  
p l a t e  boundary  l a y e r .  The h i g h e r  modes are  
a l l  h e a v i l y  damped f o r  the  B l a s i u s  l a y e r .  The 
main p h y s i c a l  f e a t u r e s  i nc lude  two v i s c o u s  
l a y e r s  (a v i s c o u s  s u b l a y e r  near  the  w a l l ,  and 
a c r i t i c a l  l a y e r  near  where U ( ~ ) = R e a l ( t h e  
phase s p e e d ) ) .  The T-S wave p r o p a g a t e s  
downstream and may grow or decay  depending on 
the  boundary  l a y e r ,  Reynolds  number, and 
f r e q u e n c y .  Across  the  s u b l a y e r ,  the  Reynolds  
s t r e s s  jumps from ze ro  to  some v a l u e .  Across  
the  c r i t i c a l  l a y e r ,  t h a t  s t r e s s  jumps back to  
z e r o .  This  Reynolds  s t r e s s ,  i f  v i s c o u s  
dampening i s  no t  too  l a r g e ,  can l ead  to  growth 
of  the wave. 

Figure B.I 

2.  The 4ecavin~ ~ tand ing  Fare  decays  
e x p o n e n t i a l l y  in the  s t reamwtse  d i r e c t i o n  and 
o s c i l l a t e s  s i n u s o i d a l l y  in t ime as 
v = ~ ( y ) e x p ( - ~ x - i ~ t ) .  This  o s c i l l a t i o n  does no t  
p r o p a g a t e  in  the  s t reamwise  d i r e c t i o n ;  the  ~ 
phase speed i s  pure imaginary°  Above the  
boundary  l a y e r ,  the s t a n d i n g  wave behaves  as 
v=[Aexp(-my)+Bsin~y+cos~y]exp(-~x-ia/t). 
Far -away from the  boundary  l a y e r ,  t h i s  / 
f l u c t u a t i o n  i s  i r r o t a t i o n a l o  The l i m i t  of  a 
s t a n d i n g  wave as ~ 0  i s  a Stokes  wave 
u ( y , t ) = f ( y ) e x p ( - i ~ t ) ,  %-=0, f o r  an o s c i l l a t i n g  
f r e e s t r e a m .  The ~ c o l l i s i o n  ~ o f  v o r t i c a l  and 
o t h e r  f r e e s t r e a m  d i s t u r b a n c e s  wi th  the l e a d i n g  
edge can e x c i t e  a spec t rum of these  decay ing  
waves.  I n t e r a c t i o n s  between the  t r a i l i n g  edge 
and d i s t u ~ b a n c e s  are  a l s o  b e l i e v e d  to  e x c i t e  
these  waves .  S teady  waves of  t h i s  form are 
a l s o  induced by f low over  a wavy wa l l  w i th  a 
l e a d i n g  edge° 

J 

Figure B.2 
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3. The growing s t a n d i n g  wave i s  the  
e x p o n e n t i a l l y  growing c o u n t e r p a r t  to  ( 2 ) .  I f  
i n v i s c i d ,  o s c i l l a t i o n s  (2) and (3) a re  r e l a t e d ~  
by ~s = ~ * .  Al though the v i s c o u s  terms do not  ~ 
t r a n s f o r m  t h i s  way, c a l c u l a t i o n s  show t h a t  
t h i s  r e l a t i o n s h i p  i s  a good guide for l a r g e  
Reynolds  numbers.  The s t e a d y  l i m i t  of  t h i s  
wave behaves  f u n d a m e n t a l l y  d i f f e r e n t  than  ( 2 ) .  
The phase speed i s  pure  i m a g i n a r y .  This  
o s c i l l a t i o n  i s  b e l i e v e d  to  be e x c i t e d  by / 
l e a d i n g  and t r a i l i n g  edges .  Like ( $ ) ,  t h i s  
o s c i l l a t i o n  r e p r e s e n t s  an ups t ream i n f l u e n c e ~  
of  downstream b . c .  in  numer ica l  c a l c u l a t i o n s .  
Wall waviness  can a l s o  e x c i t e  these  
f l u c t u a t i o n s .  

Figure B.3 

4.  Decavine  v o r t i c a ~  f l u c t u a t i o n #  p r o p a g a t e  
downstream wi th  a speed s l i g h t l y  g r e a t e r  than  
the  f r e e s t r e a m ,  and decay  s lowly  as 
v=~(y) • xp ( i ~  x - c , t  ) ) • xp ¢~x) whez • 

Z - r  ~ = ( ~  +W ) / R ~ + . . .  A p a s s i v e  v i s c o u s  s u b l a y e r  
forms a t  the w a l l .  The s m a l l n e s s  o f  the  
v e l o c i t y  f l u c t u a t i o n s  in  the  boundary  l a y e r  i s  
caused  by the  f o r m a t i o n  of  a l a y e r  of  ~ ~ "" ~ - 
v o r t i o i t y  a t  the ~edge ~ o f  the boundary  l a y e r  
which induces  a f low in the d i r e c t i o n  o p p o s i t e  ~ ~ :  ! ~ : : : ~  = ~s i ~  
to  t h a t  induced by the v o r t i c a l  f r e e s t r e a m  [ . . . .  
d i s t u r b a n c e s .  Outs ide  of  the boundary  l a y e r ,  
the  f low behaves  as  
v=[Aexp(-my)+Bsin~y+cos~y]exp[i~(x-ct)]. Far  
above the  boundary  l a y e r ,  the f l u c t u a t i o n s  are  
r o t a t i o n a l ,  in  c o n t r a s t  to  waves (2) and ( 3 ) .  F i g u r e  B.4  

5.  The uvat ream t r a v e l i n 2  v o r t i c ~ l  wave grows 
e x p l o s i v e l y  l i k e  exp(+R~x).  I t  p r o p a g a t e s  
ups t ream at  a speed a p p r o x i m a t e l y  equal  to  -U~ 
and r e p r e s e n t s  ups t ream d i f f u s i o n  of  
v o r t l c l t y .  D i f f i c u l t  to  c a l c u l a t e  due to  the  
v e r y  h igh  f r e q u e n c y  o s c i l l a t i o n  e x p ( i ~ y )  in 
the  boundary  l a y e r .  This  o s c i l l a t l o n ,  l l k e  
waves ( 2 ) - ( 4 ) ,  a l s o  e x i s t s  f o r  a un i form mean 
f low,  U=I, in c o n t r a s t  to  the s t a b i l i t y  waves 
f o r  which a boundary  l a y e r  must be p r e s e n t .  
Above the  boundary  l a y e r ,  t h i s  o s c i l l a t l o n  
behaves  as 
v=[Aexp(-my)+Bcos~y+sin~y]exp[i~(x-ct)]. This  
wave i s  one of  the ups t ream i n f l u e n c e s  of  a 
downstream boundary  c o n d i t i o n  in  a 
c a l c u l a t i o n a l  domain. I t  i s  one of  the 
ups t ream i n f l u e n c e s  of  l e a d i n g  and t r a i l i n g  
edges ,  and i s  pe rhaps  an a d d i t i o n a l  v i s c o u s  
d i f f u s i o n  e f f e c t  in  n o n - p a r a l l e l  f l o w s .  Figure Bo5 
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NOMENCLATURE 

a, b 

a~ 
A* =~Z+yZ 
B, 
c=cr +ic( 

D=d/dy 
f(y)=f~+if£ 

convergence parameters in generalized Fourier 
transforms, equation (2.6) 

defined in equation (A.24) 

constants in equation (3.19a) 
complex phase speed 
complex constants in equation (3.8) 
ordinary derivative 
complex amplitude of the longitudinal velocity 

F forcing function 
F'(~), F÷(8) Fourier coefficients of the forcing function 
ga \ defined in equation (4.20) 
G 
hN 

L(O) Lt,) 
P 
R, R& 

s=i~ 
So 
S , S~ 
S m 

t 
U, V, W 
U(y) 
U~ 
V, W 

W 
x 

Y 

Y 
z 

defined in equation (A.28) 
constants in the partial fractions of equation (3.21) 
(-I)'/z 
contribution from the jth pole as defined in 

equation (4.2) 
operators defined in eqns. (A.II,A.12) 
disturbance pressure 
Reynolds number based on characteristic thickness 

of the boundary layer 
Laplace parameter 
real value of s lying to the right of all poles 
values of s defined in equation (4.11) 
transformed variable in equation (A.28) 
time 
disturbance velocities in the x, y and z directions 
mean velocity in the streamwise direction 
mean x-velocity in the frees,ream 
mean velocities in the y and z directions; 

see equation (A.17) for use of V, W as 
transformed variables in Appendix A 

Wronskian 
coordinate parallel to plate in the streamwise direction 
coordinate normal to the plate 
y-value of the boundary layer edge 
y-value for the asymptotic matching 
spanwise coordinate 

~,lt N) 

V a 
S 

#=I/R 

x-wavenumber 
x-wavenumbers of the discrete modes 
y-wavenumber 
z-wavenumber; contour of integration 
Laplacian operator 
characteristic thickness of the boundary layer; 

delta function 
cofactor 
defined in equation (3.18) 
inverse of Reynolds number 
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z ],Iz /~ [~ +iR(~-~ ; see equation (A.15a,b) 
for definition in Appendix A 

kinematic viscosity 
disturbance vorticity in the z-direction 

~(y)=~,+i~. complex amplitude of the normal velocity disturbance 
~. ,i=i,2,3,4 four independent solutions of the Orr-Sommerfeld equation 
~(0)" defined in equation (3.17) 
F integration contour 
A -~ <A<~, imaginary part of s lying to the right 

of all poles; variable defined in equation (A.13) 
frequency 
vector defined in equation (4.13) 
defined in equation (4.18) 

(-1 time average 
e 

P 
r, i 

(o1 
C.1 .  

boundary layer edge 
particular integral 
real and imaginary parts of a complex variable 
partial derivative with respect to x 
Fourier transform 
evaluated at x=O 
classical solution 
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